From a sample taken from a population, we can determine sample's statistics (mean for example). Because we can take many samples from one population, so the value of a statistic vary from sample to sample. The variation of statistic conforms law known as probability distribution of statistic. In this page, we investigate some properties of Student's distribution (for mean), chi-square and Fisher distributions (for variance).
Student's distribution
Consider a population with random variable `X` normally distributed ; mean of `X` is `mu`. From this population, we can draw many samples with size `n`. The mean and standard deviation of each sample are `bar x` and `s` respectively. The random variable
| `t=(bar x-mu)/(s/sqrt(n))` | (28) |
has Student's distribution (also known as `t` distribution). The probability density function of this distribution has the form:
| `f(t)=(Gamma ((nu+1)/2))/(sqrt(nupi)\ Gamma(nu/2))(1+t^2/nu)^(-(nu+1)//2)` | (29) |
| with | `Gamma(x)=int_0^oo e^(-z)z^(x-1)dz` | (30) |
In this distribution `nu=n–1` denotes degree of freedom.
The shape of this probability density function is presented in Fig. 1.
Fig.1 The curve of probability density function of Student's distribution
In Fig. 1, there are 3 curves for degrees of freedom `nu=1` (blue), `nu=3` (red), `nu=30` (green). Because `f(t)` is an even function, so the ordinate is its symmetric axis. When degree of freedom increases, the curve of Student's distribution approaches to that of normal distribution. When `n` is large (greater than 50), Student's distribution and normal one are nearly the same.
This distribution is widely used in statistics, specially in estimation and hypothesis testing. When we do not know `mu` and `sigma^2` of the population, we have to use `bar x` and `s^2` of sample, and Student's distribution is used instead of normal one.
Table of percentage point for t distribution
Student's distribution is frequently used in statistics, so table of percentage point of this distribution is constructed to facilitate manual calculations. This table gives us the value of
`t_(a,\ df)` corresponding to the value of degree of freedom `df`, and the value of `a`, related to significance level, determined from:
| `a=int_t^oo f(x)dx` | (31) |
The value of `a` is also illustrated in Fig. 2.
Fig. 2 Value of `a` and percentage point of Student's distribution.
The values frequently used of `a` are 0,1, 0,05, 0,025, 0,01, and 0,005.
Table 1 help us to determine the value of `t` for popular values of `a` and `df`.
| 0,2 | 0,1 | 0,05 | 0,025 | 0,01 | 0,005 | 0,0025 | |
|---|---|---|---|---|---|---|---|
| 1 | 1,3764 | 3,0777 | 6,3138 | 12,7062 | 31,8205 | 63,6567 | 127,3213 |
| 2 | 1,0607 | 1,8856 | 2,9200 | 4,3027 | 6,9646 | 9,9248 | 14,0890 |
| 3 | 0,9785 | 1,6377 | 2,3534 | 3,1824 | 4,5407 | 5,8409 | 7,4533 |
| 4 | 0,9410 | 1,5332 | 2,1318 | 2,7764 | 3,7469 | 4,6041 | 5,5976 |
| 5 | 0,9195 | 1,4759 | 2,0150 | 2,5706 | 3,3649 | 4,0321 | 4,7733 |
| 6 | 0,9057 | 1,4398 | 1,9432 | 2,4469 | 3,1427 | 3,7074 | 4,3168 |
| 7 | 0,8960 | 1,4149 | 1,8946 | 2,3646 | 2,9980 | 3,4995 | 4,0293 |
| 8 | 0,8889 | 1,3968 | 1,8595 | 2,3060 | 2,8965 | 3,3554 | 3,8325 |
| 9 | 0,8834 | 1,3830 | 1,8331 | 2,2622 | 2,8214 | 3,2498 | 3,6897 |
| 10 | 0,8791 | 1,3722 | 1,8125 | 2,2281 | 2,7638 | 3,1693 | 3,5814 |
| 11 | 0,8755 | 1,3634 | 1,7959 | 2,2010 | 2,7181 | 3,1058 | 3,4966 |
| 12 | 0,8726 | 1,3562 | 1,7823 | 2,1788 | 2,6810 | 3,0545 | 3,4284 |
| 13 | 0,8702 | 1,3502 | 1,7709 | 2,1604 | 2,6503 | 3,0123 | 3,3725 |
| 14 | 0,8681 | 1,3450 | 1,7613 | 2,1448 | 2,6245 | 2,9768 | 3,3257 |
| 15 | 0,8662 | 1,3406 | 1,7531 | 2,1314 | 2,6025 | 2,9467 | 3,2860 |
| 16 | 0,8647 | 1,3368 | 1,7459 | 2,1199 | 2,5835 | 2,9208 | 3,2520 |
| 17 | 0,8633 | 1,3334 | 1,7396 | 2,1098 | 2,5669 | 2,8982 | 3,2224 |
| 18 | 0,8620 | 1,3304 | 1,7341 | 2,1009 | 2,5524 | 2,8784 | 3,1966 |
| 19 | 0,8610 | 1,3277 | 1,7291 | 2,0930 | 2,5395 | 2,8609 | 3,1737 |
| 20 | 0,8600 | 1,3253 | 1,7247 | 2,0860 | 2,5280 | 2,8453 | 3,1534 |
| 21 | 0,8591 | 1,3232 | 1,7207 | 2,0796 | 2,5176 | 2,8314 | 3,1352 |
| 22 | 0,8583 | 1,3212 | 1,7171 | 2,0739 | 2,5083 | 2,8188 | 3,1188 |
| 23 | 0,8575 | 1,3195 | 1,7139 | 2,0687 | 2,4999 | 2,8073 | 3,1040 |
| 24 | 0,8569 | 1,3178 | 1,7109 | 2,0639 | 2,4922 | 2,7969 | 3,0905 |
| 25 | 0,8562 | 1,3163 | 1,7081 | 2,0595 | 2,4851 | 2,7874 | 3,0782 |
| 26 | 0,8557 | 1,3150 | 1,7056 | 2,0555 | 2,4786 | 2,7787 | 3,0669 |
| 27 | 0,8551 | 1,3137 | 1,7033 | 2,0518 | 2,4727 | 2,7707 | 3,0565 |
| 28 | 0,8546 | 1,3125 | 1,7011 | 2,0484 | 2,4671 | 2,7633 | 3,0469 |
| 29 | 0,8542 | 1,3114 | 1,6991 | 2,0452 | 2,4620 | 2,7564 | 3,0380 |
| 30 | 0,8538 | 1,3104 | 1,6973 | 2,0423 | 2,4573 | 2,7500 | 3,0298 |
| 35 | 0,8520 | 1,3062 | 1,6896 | 2,0301 | 2,4377 | 2,7238 | 2,9960 |
| 40 | 0,8507 | 1,3031 | 1,6839 | 2,0211 | 2,4233 | 2,7045 | 2,9712 |
| 45 | 0,8497 | 1,3006 | 1,6794 | 2,0141 | 2,4121 | 2,6896 | 2,9521 |
| 50 | 0,8489 | 1,2987 | 1,6759 | 2,0086 | 2,4033 | 2,6778 | 2,9370 |
| 55 | 0,8482 | 1,2971 | 1,6730 | 2,0040 | 2,3961 | 2,6682 | 2,9247 |
| 60 | 0,8477 | 1,2958 | 1,6706 | 2,0003 | 2,3901 | 2,6603 | 2,9146 |
| 70 | 0,8468 | 1,2938 | 1,6669 | 1,9944 | 2,3808 | 2,6479 | 2,8987 |
| 80 | 0,8461 | 1,2922 | 1,6641 | 1,9901 | 2,3739 | 2,6387 | 2,8870 |
| 90 | 0,8456 | 1,2910 | 1,6620 | 1,9867 | 2,3685 | 2,6316 | 2,8779 |
| 100 | 0,8452 | 1,2901 | 1,6602 | 1,9840 | 2,3642 | 2,6259 | 2,8707 |
| 120 | 0,8446 | 1,2886 | 1,6577 | 1,9799 | 2,3578 | 2,6174 | 2,8599 |
| ∞ | 0,8416 | 1,2816 | 1,6449 | 1,9600 | 2,3264 | 2,5758 | 2,8070 |
In Table 1, in the first row are the values of `a`, in the first column are the values of `df`, the last row is for normal distribution.
For example, if `a=0,05` and `df=5`. Then, the value of `t` is in the intersection of column 0,05 and row 5: `t_(0,05,\ 5)=2,0150`.
Chi-square distribution
Consider a population with random variable `X` normally distributed ; variance of `X` is `sigma^2`. From this population, we can draw many samples with size `n`. Variance of each sample is `s^2`. The variable
| `chi^2=(nus^2)/sigma^2` | (32) |
has chi-square distribution whose probability density function has the form:
| `f(chi^2)=1/(2^(nu/2)\ Gamma(nu/2))\ chi^(nu-2)\ e^(-chi^2/2)` | (33) |
Similar to the case of Student's distribution, in chi-square distribution `nu=n–1` denotes degree of freedom.
The curves of this probability density function are presented in Fig. 3.
Fig. 3 The curves of probability density function of chi-square distribution.
In Fig. 3 there are 4 curves for degree of freedom of `nu=1` (blue), `nu=2` (red), `nu=3` (green) and `nu=5` (black).
Table of percentage point for `chi^2` distribution
Chi-square distribution is often used in statistics, so table of percentage point of this distribution is constructed to help us in manual calculations. This table gives us the value of `chi_(a,\ df)^2` corresponding to the value of degree of freedom `df`, and the value of `a`, related to significance level, determined from:
| `a=int_(chi^2)^oo f(x)dx` | (34) |
The value of `a` is also illustrated in Fig. 4.
Fig. 4 The value of `a` and percentage point of chi-square distribution
Table 2a and 2b help us to determine the value of `chi^2` for popular value of `a` and `df`. Table 2a corresponds to low values of `a` (`a<=0,20`), and Table 2b to high values of `a` (`a>= 0,80`).
| 0,2 | 0,1 | 0,05 | 0,025 | 0,01 | 0,005 | 0,0025 | |
|---|---|---|---|---|---|---|---|
| 1 | 1,642 | 2,706 | 3,841 | 5,024 | 6,635 | 7,879 | 9,141 |
| 2 | 3,219 | 4,605 | 5,991 | 7,378 | 9,210 | 10,597 | 11,983 |
| 3 | 4,642 | 6,251 | 7,815 | 9,348 | 11,345 | 12,838 | 14,320 |
| 4 | 5,989 | 7,779 | 9,488 | 11,143 | 13,277 | 14,860 | 16,424 |
| 5 | 7,289 | 9,236 | 11,070 | 12,833 | 15,086 | 16,750 | 18,386 |
| 6 | 8,558 | 10,645 | 12,592 | 14,449 | 16,812 | 18,548 | 20,249 |
| 7 | 9,803 | 12,017 | 14,067 | 16,013 | 18,475 | 20,278 | 22,040 |
| 8 | 11,030 | 13,362 | 15,507 | 17,535 | 20,090 | 21,955 | 23,774 |
| 9 | 12,242 | 14,684 | 16,919 | 19,023 | 21,666 | 23,589 | 25,462 |
| 10 | 13,442 | 15,987 | 18,307 | 20,483 | 23,209 | 25,188 | 27,112 |
| 11 | 14,631 | 17,275 | 19,675 | 21,920 | 24,725 | 26,757 | 28,729 |
| 12 | 15,812 | 18,549 | 21,026 | 23,337 | 26,217 | 28,300 | 30,318 |
| 13 | 16,985 | 19,812 | 22,362 | 24,736 | 27,688 | 29,819 | 31,883 |
| 14 | 18,151 | 21,064 | 23,685 | 26,119 | 29,141 | 31,319 | 33,426 |
| 15 | 19,311 | 22,307 | 24,996 | 27,488 | 30,578 | 32,801 | 34,950 |
| 16 | 20,465 | 23,542 | 26,296 | 28,845 | 32,000 | 34,267 | 36,456 |
| 17 | 21,615 | 24,769 | 27,587 | 30,191 | 33,409 | 35,718 | 37,946 |
| 18 | 22,760 | 25,989 | 28,869 | 31,526 | 34,805 | 37,156 | 39,422 |
| 19 | 23,900 | 27,204 | 30,144 | 32,852 | 36,191 | 38,582 | 40,885 |
| 20 | 25,038 | 28,412 | 31,410 | 34,170 | 37,566 | 39,997 | 42,336 |
| 21 | 26,171 | 29,615 | 32,671 | 35,479 | 38,932 | 41,401 | 43,775 |
| 22 | 27,301 | 30,813 | 33,924 | 36,781 | 40,289 | 42,796 | 45,204 |
| 23 | 28,429 | 32,007 | 35,172 | 38,076 | 41,638 | 44,181 | 46,623 |
| 24 | 29,553 | 33,196 | 36,415 | 39,364 | 42,980 | 45,559 | 48,034 |
| 25 | 30,675 | 34,382 | 37,652 | 40,646 | 44,314 | 46,928 | 49,435 |
| 26 | 31,795 | 35,563 | 38,885 | 41,923 | 45,642 | 48,290 | 50,829 |
| 27 | 32,912 | 36,741 | 40,113 | 43,195 | 46,963 | 49,645 | 52,215 |
| 28 | 34,027 | 37,916 | 41,337 | 44,461 | 48,278 | 50,993 | 53,594 |
| 29 | 35,139 | 39,087 | 42,557 | 45,722 | 49,588 | 52,336 | 54,967 |
| 30 | 36,250 | 40,256 | 43,773 | 46,979 | 50,892 | 53,672 | 56,332 |
| 32 | 38,466 | 42,585 | 46,194 | 49,480 | 53,486 | 56,328 | 59,046 |
| 34 | 40,676 | 44,903 | 48,602 | 51,966 | 56,061 | 58,964 | 61,738 |
| 36 | 42,879 | 47,212 | 50,998 | 54,437 | 58,619 | 61,581 | 64,410 |
| 38 | 45,076 | 49,513 | 53,384 | 56,896 | 61,162 | 64,181 | 67,063 |
| 40 | 47,269 | 51,805 | 55,758 | 59,342 | 63,691 | 66,766 | 69,699 |
| 42 | 49,456 | 54,090 | 58,124 | 61,777 | 66,206 | 69,336 | 72,320 |
| 44 | 51,639 | 56,369 | 60,481 | 64,201 | 68,710 | 71,893 | 74,925 |
| 46 | 53,818 | 58,641 | 62,830 | 66,617 | 71,201 | 74,437 | 77,517 |
| 48 | 55,993 | 60,907 | 65,171 | 69,023 | 73,683 | 76,969 | 80,097 |
| 50 | 58,164 | 63,167 | 67,505 | 71,420 | 76,154 | 79,490 | 82,664 |
| 60 | 68,972 | 74,397 | 79,082 | 83,298 | 88,379 | 91,952 | 95,344 |
| 70 | 79,715 | 85,527 | 90,531 | 95,023 | 100,425 | 104,215 | 107,808 |
| 80 | 90,405 | 96,578 | 101,879 | 106,629 | 112,329 | 116,321 | 120,102 |
| 90 | 101,054 | 107,565 | 113,145 | 118,136 | 124,116 | 128,299 | 132,256 |
| 100 | 111,667 | 118,498 | 124,342 | 129,561 | 135,807 | 140,169 | 144,293 |
| 0,8 | 0,9 | 0,95 | 0,975 | 0,99 | 0,995 | 0,9975 | |
|---|---|---|---|---|---|---|---|
| 1 | 0,064 | 0,016 | 0,004 | 0,001 | 0,000 | 0,000 | 0,000 |
| 2 | 0,446 | 0,211 | 0,103 | 0,051 | 0,020 | 0,010 | 0,005 |
| 3 | 1,005 | 0,584 | 0,352 | 0,216 | 0,115 | 0,072 | 0,045 |
| 4 | 1,649 | 1,064 | 0,711 | 0,484 | 0,297 | 0,207 | 0,145 |
| 5 | 2,343 | 1,610 | 1,145 | 0,831 | 0,554 | 0,412 | 0,307 |
| 6 | 3,070 | 2,204 | 1,635 | 1,237 | 0,872 | 0,676 | 0,527 |
| 7 | 3,822 | 2,833 | 2,167 | 1,690 | 1,239 | 0,989 | 0,794 |
| 8 | 4,594 | 3,490 | 2,733 | 2,180 | 1,646 | 1,344 | 1,104 |
| 9 | 5,380 | 4,168 | 3,325 | 2,700 | 2,088 | 1,735 | 1,450 |
| 10 | 6,179 | 4,865 | 3,940 | 3,247 | 2,558 | 2,156 | 1,827 |
| 11 | 6,989 | 5,578 | 4,575 | 3,816 | 3,053 | 2,603 | 2,232 |
| 12 | 7,807 | 6,304 | 5,226 | 4,404 | 3,571 | 3,074 | 2,661 |
| 13 | 8,634 | 7,042 | 5,892 | 5,009 | 4,107 | 3,565 | 3,112 |
| 14 | 9,467 | 7,790 | 6,571 | 5,629 | 4,660 | 4,075 | 3,582 |
| 15 | 10,307 | 8,547 | 7,261 | 6,262 | 5,229 | 4,601 | 4,070 |
| 16 | 11,152 | 9,312 | 7,962 | 6,908 | 5,812 | 5,142 | 4,573 |
| 17 | 12,002 | 10,085 | 8,672 | 7,564 | 6,408 | 5,697 | 5,092 |
| 18 | 12,857 | 10,865 | 9,390 | 8,231 | 7,015 | 6,265 | 5,623 |
| 19 | 13,716 | 11,651 | 10,117 | 8,907 | 7,633 | 6,844 | 6,167 |
| 20 | 14,578 | 12,443 | 10,851 | 9,591 | 8,260 | 7,434 | 6,723 |
| 21 | 15,445 | 13,240 | 11,591 | 10,283 | 8,897 | 8,034 | 7,289 |
| 22 | 16,314 | 14,041 | 12,338 | 10,982 | 9,542 | 8,643 | 7,865 |
| 23 | 17,187 | 14,848 | 13,091 | 11,689 | 10,196 | 9,260 | 8,450 |
| 24 | 18,062 | 15,659 | 13,848 | 12,401 | 10,856 | 9,886 | 9,044 |
| 25 | 18,940 | 16,473 | 14,611 | 13,120 | 11,524 | 10,520 | 9,646 |
| 26 | 19,820 | 17,292 | 15,379 | 13,844 | 12,198 | 11,160 | 10,256 |
| 27 | 20,703 | 18,114 | 16,151 | 14,573 | 12,879 | 11,808 | 10,873 |
| 28 | 21,588 | 18,939 | 16,928 | 15,308 | 13,565 | 12,461 | 11,497 |
| 29 | 22,475 | 19,768 | 17,708 | 16,047 | 14,256 | 13,121 | 12,128 |
| 30 | 23,364 | 20,599 | 18,493 | 16,791 | 14,953 | 13,787 | 12,765 |
| 32 | 25,148 | 22,271 | 20,072 | 18,291 | 16,362 | 15,134 | 14,056 |
| 34 | 26,938 | 23,952 | 21,664 | 19,806 | 17,789 | 16,501 | 15,368 |
| 36 | 28,735 | 25,643 | 23,269 | 21,336 | 19,233 | 17,887 | 16,700 |
| 38 | 30,537 | 27,343 | 24,884 | 22,878 | 20,691 | 19,289 | 18,050 |
| 40 | 32,345 | 29,051 | 26,509 | 24,433 | 22,164 | 20,707 | 19,417 |
| 42 | 34,157 | 30,765 | 28,144 | 25,999 | 23,650 | 22,138 | 20,799 |
| 44 | 35,974 | 32,487 | 29,787 | 27,575 | 25,148 | 23,584 | 22,196 |
| 46 | 37,795 | 34,215 | 31,439 | 29,160 | 26,657 | 25,041 | 23,606 |
| 48 | 39,621 | 35,949 | 33,098 | 30,755 | 28,177 | 26,511 | 25,029 |
| 50 | 41,449 | 37,689 | 34,764 | 32,357 | 29,707 | 27,991 | 26,464 |
| 60 | 50,641 | 46,459 | 43,188 | 40,482 | 37,485 | 35,534 | 33,791 |
| 70 | 59,898 | 55,329 | 51,739 | 48,758 | 45,442 | 43,275 | 41,332 |
| 80 | 69,207 | 64,278 | 60,391 | 57,153 | 53,540 | 51,172 | 49,043 |
| 90 | 78,558 | 73,291 | 69,126 | 65,647 | 61,754 | 59,196 | 56,892 |
| 100 | 87,945 | 82,358 | 77,929 | 74,222 | 70,065 | 67,328 | 64,857 |
The construction and usage of these tables are similar to that of Table 1.
For example, if `a=0,05` and `df=8` ; then `chi_(0,05,\ 8)^2=15,507`
Fisher distribution
Consider two populations with random variable `X` normally distributed; the variances of random variable `X` of two populations are `sigma_1^2` and `sigma_2^2`. Take two samples of size `n_1` and `n_2`, the variances of these samples are `s_1^2` and `s_2^2`. The variable
| `F=(s_1^2/sigma_1^2)/(s_2^2/sigma_2^2)` | (35) |
has Fisher distribution whose probability density function is presented in the formula:
| `f(F)=(Gamma((nu_1+nu_2)/2)(nu_1/nu_2)^(nu_1/2)F^(nu_1/2-1))/( Gamma(nu_1/2)Gamma(nu_2/2)(1+(nu_1F)/nu_2)^((nu_1+nu_2)/2))` | (36) |
There are two degree of freedom `nu_1=n_1–1` and `nu_2=n_2– 1`. The shape of this distribution is shown in Fig. 5.
Fig. 5 Some curves of probability density function of Fisher distribution
In Fig. 5, blue curve corresponds to `nu_1=2` and `nu_2=6` ; red curve corresponds `nu_1=4` and `nu_2= 6` ; and green curve corresponds `nu_1=10` and `nu_2=6`.
Table of percentage point for F distribution
Fisher distribution is widely used in statistics, especially in data analysis of experiments. So table of percentage point of this distribution is constructed to facilitate manual calculations. This table gives us the value of `F_(a,\ df_1,\ df_2)` corresponding to the degree of freedom `df_1`, `df_2` and `a`. The value of `a` is determined from:
| `a=int_F^oo f(x)dx` | (37) |
The value of `a` is also illustrated in Fig. 6.
Fig. 6 Value of `a` and percentage point of Fisher distribution
The table consists of several parts, each part corresponds to one value of `a`. Each column corresponds to one value of degree of freedom `df_1` and each row to one value of degree of freedom `df_2`. Table 3 is the part corresponding to `a=0,05`.
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 161,4 | 199,5 | 215,7 | 224,6 | 230,2 | 234,0 | 236,8 | 238,9 | 240,5 | 241,9 |
| 2 | 18,51 | 19,00 | 19,16 | 19,25 | 19,30 | 19,33 | 19,35 | 19,37 | 19,38 | 19,40 |
| 3 | 10,13 | 9,552 | 9,277 | 9,117 | 9,013 | 8,941 | 8,887 | 8,845 | 8,812 | 8,786 |
| 4 | 7,709 | 6,944 | 6,591 | 6,388 | 6,256 | 6,163 | 6,094 | 6,041 | 5,999 | 5,964 |
| 5 | 6,608 | 5,786 | 5,409 | 5,192 | 5,050 | 4,950 | 4,876 | 4,818 | 4,772 | 4,735 |
| 6 | 5,987 | 5,143 | 4,757 | 4,534 | 4,387 | 4,284 | 4,207 | 4,147 | 4,099 | 4,060 |
| 7 | 5,591 | 4,737 | 4,347 | 4,120 | 3,972 | 3,866 | 3,787 | 3,726 | 3,677 | 3,637 |
| 8 | 5,318 | 4,459 | 4,066 | 3,838 | 3,687 | 3,581 | 3,500 | 3,438 | 3,388 | 3,347 |
| 9 | 5,117 | 4,256 | 3,863 | 3,633 | 3,482 | 3,374 | 3,293 | 3,230 | 3,179 | 3,137 |
| 10 | 4,965 | 4,103 | 3,708 | 3,478 | 3,326 | 3,217 | 3,135 | 3,072 | 3,020 | 2,978 |
| 11 | 4,844 | 3,982 | 3,587 | 3,357 | 3,204 | 3,095 | 3,012 | 2,948 | 2,896 | 2,854 |
| 12 | 4,747 | 3,885 | 3,490 | 3,259 | 3,106 | 2,996 | 2,913 | 2,849 | 2,796 | 2,753 |
| 13 | 4,667 | 3,806 | 3,411 | 3,179 | 3,025 | 2,915 | 2,832 | 2,767 | 2,714 | 2,671 |
| 14 | 4,600 | 3,739 | 3,344 | 3,112 | 2,958 | 2,848 | 2,764 | 2,699 | 2,646 | 2,602 |
| 15 | 4,543 | 3,682 | 3,287 | 3,056 | 2,901 | 2,790 | 2,707 | 2,641 | 2,588 | 2,544 |
| 16 | 4,494 | 3,634 | 3,239 | 3,007 | 2,852 | 2,741 | 2,657 | 2,591 | 2,538 | 2,494 |
| 17 | 4,451 | 3,592 | 3,197 | 2,965 | 2,810 | 2,699 | 2,614 | 2,548 | 2,494 | 2,450 |
| 18 | 4,414 | 3,555 | 3,160 | 2,928 | 2,773 | 2,661 | 2,577 | 2,510 | 2,456 | 2,412 |
| 19 | 4,381 | 3,522 | 3,127 | 2,895 | 2,740 | 2,628 | 2,544 | 2,477 | 2,423 | 2,378 |
| 20 | 4,351 | 3,493 | 3,098 | 2,866 | 2,711 | 2,599 | 2,514 | 2,447 | 2,393 | 2,348 |
For example the value of `F_(0,05,\ 8,\ 12)` is in the part corresponds to 0,05, in the cell corresponds to the row of 12, the column of 8: `F_(0,05,\ 8,\ 12)=3,072`.
The values the most frequently used of `a` are 0,20, 0,10, 0,05, 0,025, 0,01, and 0,005. In cases of large number of `a` (`a>=0,80`), we can use formula:
| `F_(1-alpha,\ nu_1,\ nu_2)=1/F_(alpha,\ nu_1,\ nu_2)` | (38) |