logo 2uData.com

The previous pageDistribution of statisticsThe next page

From a sample taken from a population, we can determine sample's statistics (mean for example). Because we can take many samples from one population, so the value of a statistic vary from sample to sample. The variation of statistic conforms law known as probability distribution of statistic. In this page, we investigate some properties of Student's distribution (for mean), chi-square and Fisher distributions (for variance).

Student's distribution

 

Consider a population with random variable `X` normally distributed ; mean of `X` is `mu`. From this population, we can draw many samples with size `n`. The mean and standard deviation of each sample are `bar x` and `s` respectively. The random variable

`t=(bar x-mu)/(s/sqrt(n))`(28)

has Student's distribution (also known as `t` distribution). The probability density function of this distribution has the form:

`f(t)=(Gamma ((nu+1)/2))/(sqrt(nupi)\ Gamma(nu/2))(1+t^2/nu)^(-(nu+1)//2)`(29)
with`Gamma(x)=int_0^oo e^(-z)z^(x-1)dz`(30)

In this distribution `nu=n–1` denotes degree of freedom.

The shape of this probability density function is presented in Fig. 1.

Fig.1 The curve of probability density function of Student's distribution

In Fig. 1, there are 3 curves for degrees of freedom `nu=1` (blue), `nu=3` (red), `nu=30` (green). Because `f(t)` is an even function, so the ordinate is its symmetric axis. When degree of freedom increases, the curve of Student's distribution approaches to that of normal distribution. When `n` is large (greater than 50), Student's distribution and normal one are nearly the same.

This distribution is widely used in statistics, specially in estimation and hypothesis testing. When we do not know `mu` and `sigma^2` of the population, we have to use `bar x` and `s^2` of sample, and Student's distribution is used instead of normal one.


Table of percentage point for t distribution

Student's distribution is frequently used in statistics, so table of percentage point of this distribution is constructed to facilitate manual calculations. This table gives us the value of
`t_(a,\ df)` corresponding to the value of degree of freedom `df`, and the value of `a`, related to significance level, determined from:

`a=int_t^oo f(x)dx`(31)

The value of `a` is also illustrated in Fig. 2.

f(z)t a

Fig. 2  Value of `a` and percentage point of Student's distribution.

The values frequently used of `a` are 0,1, 0,05, 0,025, 0,01, and 0,005.

Table 1 help us to determine the value of `t` for popular values of `a` and `df`.

Table 1 Percentage point of Student's distribution
0,2 0,1 0,05 0,025 0,01 0,005 0,0025
1 1,3764 3,0777 6,3138 12,7062 31,8205 63,6567 127,3213
2 1,0607 1,8856 2,9200 4,3027 6,9646 9,9248 14,0890
3 0,9785 1,6377 2,3534 3,1824 4,5407 5,8409 7,4533
4 0,9410 1,5332 2,1318 2,7764 3,7469 4,6041 5,5976
5 0,9195 1,4759 2,0150 2,5706 3,3649 4,0321 4,7733
6 0,9057 1,4398 1,9432 2,4469 3,1427 3,7074 4,3168
7 0,8960 1,4149 1,8946 2,3646 2,9980 3,4995 4,0293
8 0,8889 1,3968 1,8595 2,3060 2,8965 3,3554 3,8325
9 0,8834 1,3830 1,8331 2,2622 2,8214 3,2498 3,6897
10 0,8791 1,3722 1,8125 2,2281 2,7638 3,1693 3,5814
11 0,8755 1,3634 1,7959 2,2010 2,7181 3,1058 3,4966
12 0,8726 1,3562 1,7823 2,1788 2,6810 3,0545 3,4284
13 0,8702 1,3502 1,7709 2,1604 2,6503 3,0123 3,3725
14 0,8681 1,3450 1,7613 2,1448 2,6245 2,9768 3,3257
15 0,8662 1,3406 1,7531 2,1314 2,6025 2,9467 3,2860
16 0,8647 1,3368 1,7459 2,1199 2,5835 2,9208 3,2520
17 0,8633 1,3334 1,7396 2,1098 2,5669 2,8982 3,2224
18 0,8620 1,3304 1,7341 2,1009 2,5524 2,8784 3,1966
19 0,8610 1,3277 1,7291 2,0930 2,5395 2,8609 3,1737
20 0,8600 1,3253 1,7247 2,0860 2,5280 2,8453 3,1534
21 0,8591 1,3232 1,7207 2,0796 2,5176 2,8314 3,1352
22 0,8583 1,3212 1,7171 2,0739 2,5083 2,8188 3,1188
23 0,8575 1,3195 1,7139 2,0687 2,4999 2,8073 3,1040
24 0,8569 1,3178 1,7109 2,0639 2,4922 2,7969 3,0905
25 0,8562 1,3163 1,7081 2,0595 2,4851 2,7874 3,0782
26 0,8557 1,3150 1,7056 2,0555 2,4786 2,7787 3,0669
27 0,8551 1,3137 1,7033 2,0518 2,4727 2,7707 3,0565
28 0,8546 1,3125 1,7011 2,0484 2,4671 2,7633 3,0469
29 0,8542 1,3114 1,6991 2,0452 2,4620 2,7564 3,0380
30 0,8538 1,3104 1,6973 2,0423 2,4573 2,7500 3,0298
35 0,8520 1,3062 1,6896 2,0301 2,4377 2,7238 2,9960
40 0,8507 1,3031 1,6839 2,0211 2,4233 2,7045 2,9712
45 0,8497 1,3006 1,6794 2,0141 2,4121 2,6896 2,9521
50 0,8489 1,2987 1,6759 2,0086 2,4033 2,6778 2,9370
55 0,8482 1,2971 1,6730 2,0040 2,3961 2,6682 2,9247
60 0,8477 1,2958 1,6706 2,0003 2,3901 2,6603 2,9146
70 0,8468 1,2938 1,6669 1,9944 2,3808 2,6479 2,8987
80 0,8461 1,2922 1,6641 1,9901 2,3739 2,6387 2,8870
90 0,8456 1,2910 1,6620 1,9867 2,3685 2,6316 2,8779
100 0,8452 1,2901 1,6602 1,9840 2,3642 2,6259 2,8707
120 0,8446 1,2886 1,6577 1,9799 2,3578 2,6174 2,8599
0,8416 1,2816 1,6449 1,9600 2,3264 2,5758 2,8070

In Table 1, in the first row are the values of `a`, in the first column are the values of `df`, the last row is for normal distribution.

For example, if `a=0,05` and `df=5`. Then, the value of `t` is in the intersection of column 0,05 and row 5: `t_(0,05,\ 5)=2,0150`.


Chi-square distribution

 

Consider a population with random variable `X` normally distributed ; variance of `X` is `sigma^2`. From this population, we can draw many samples with size `n`. Variance of each sample is `s^2`. The variable

`chi^2=(nus^2)/sigma^2`(32)

has chi-square distribution whose probability density function has the form:

`f(chi^2)=1/(2^(nu/2)\ Gamma(nu/2))\ chi^(nu-2)\ e^(-chi^2/2)`(33)

Similar to the case of Student's distribution, in chi-square distribution `nu=n–1` denotes degree of freedom.

The curves of this probability density function are presented in Fig. 3.

Fig. 3 The curves of probability density function of chi-square distribution.

In Fig. 3 there are 4 curves for degree of freedom of `nu=1` (blue), `nu=2` (red), `nu=3` (green) and `nu=5` (black).


Table of percentage point for `chi^2` distribution

Chi-square distribution is often used in statistics, so table of percentage point of this distribution is constructed to help us in manual calculations. This table gives us the value of `chi_(a,\ df)^2` corresponding to the value of degree of freedom `df`, and the value of `a`, related to significance level, determined from:

`a=int_(chi^2)^oo f(x)dx`(34)

The value of `a` is also illustrated in Fig. 4.

f(χ2 ) χ 2 a

Fig. 4 The value of `a` and percentage point of chi-square distribution

Table 2a and 2b help us to determine the value of `chi^2` for popular value of `a` and `df`. Table 2a corresponds to low values of `a` (`a<=0,20`), and Table 2b to high values of `a` (`a>= 0,80`).

Table 2a Percentage point of chi-square distribution (`a<=0,20`)
0,2 0,1 0,05 0,025 0,01 0,005 0,0025
1 1,642 2,706 3,841 5,024 6,635 7,879 9,141
2 3,219 4,605 5,991 7,378 9,210 10,597 11,983
3 4,642 6,251 7,815 9,348 11,345 12,838 14,320
4 5,989 7,779 9,488 11,143 13,277 14,860 16,424
5 7,289 9,236 11,070 12,833 15,086 16,750 18,386
6 8,558 10,645 12,592 14,449 16,812 18,548 20,249
7 9,803 12,017 14,067 16,013 18,475 20,278 22,040
8 11,030 13,362 15,507 17,535 20,090 21,955 23,774
9 12,242 14,684 16,919 19,023 21,666 23,589 25,462
10 13,442 15,987 18,307 20,483 23,209 25,188 27,112
11 14,631 17,275 19,675 21,920 24,725 26,757 28,729
12 15,812 18,549 21,026 23,337 26,217 28,300 30,318
13 16,985 19,812 22,362 24,736 27,688 29,819 31,883
14 18,151 21,064 23,685 26,119 29,141 31,319 33,426
15 19,311 22,307 24,996 27,488 30,578 32,801 34,950
16 20,465 23,542 26,296 28,845 32,000 34,267 36,456
17 21,615 24,769 27,587 30,191 33,409 35,718 37,946
18 22,760 25,989 28,869 31,526 34,805 37,156 39,422
19 23,900 27,204 30,144 32,852 36,191 38,582 40,885
20 25,038 28,412 31,410 34,170 37,566 39,997 42,336
21 26,171 29,615 32,671 35,479 38,932 41,401 43,775
22 27,301 30,813 33,924 36,781 40,289 42,796 45,204
23 28,429 32,007 35,172 38,076 41,638 44,181 46,623
24 29,553 33,196 36,415 39,364 42,980 45,559 48,034
25 30,675 34,382 37,652 40,646 44,314 46,928 49,435
26 31,795 35,563 38,885 41,923 45,642 48,290 50,829
27 32,912 36,741 40,113 43,195 46,963 49,645 52,215
28 34,027 37,916 41,337 44,461 48,278 50,993 53,594
29 35,139 39,087 42,557 45,722 49,588 52,336 54,967
30 36,250 40,256 43,773 46,979 50,892 53,672 56,332
32 38,466 42,585 46,194 49,480 53,486 56,328 59,046
34 40,676 44,903 48,602 51,966 56,061 58,964 61,738
36 42,879 47,212 50,998 54,437 58,619 61,581 64,410
38 45,076 49,513 53,384 56,896 61,162 64,181 67,063
40 47,269 51,805 55,758 59,342 63,691 66,766 69,699
42 49,456 54,090 58,124 61,777 66,206 69,336 72,320
44 51,639 56,369 60,481 64,201 68,710 71,893 74,925
46 53,818 58,641 62,830 66,617 71,201 74,437 77,517
48 55,993 60,907 65,171 69,023 73,683 76,969 80,097
50 58,164 63,167 67,505 71,420 76,154 79,490 82,664
60 68,972 74,397 79,082 83,298 88,379 91,952 95,344
70 79,715 85,527 90,531 95,023 100,425 104,215 107,808
80 90,405 96,578 101,879 106,629 112,329 116,321 120,102
90 101,054 107,565 113,145 118,136 124,116 128,299 132,256
100 111,667 118,498 124,342 129,561 135,807 140,169 144,293

Table 2b Percentage point of chi-square distribution (`a>=0,80`)
0,8 0,9 0,95 0,975 0,99 0,995 0,9975
1 0,064 0,016 0,004 0,001 0,000 0,000 0,000
2 0,446 0,211 0,103 0,051 0,020 0,010 0,005
3 1,005 0,584 0,352 0,216 0,115 0,072 0,045
4 1,649 1,064 0,711 0,484 0,297 0,207 0,145
5 2,343 1,610 1,145 0,831 0,554 0,412 0,307
6 3,070 2,204 1,635 1,237 0,872 0,676 0,527
7 3,822 2,833 2,167 1,690 1,239 0,989 0,794
8 4,594 3,490 2,733 2,180 1,646 1,344 1,104
9 5,380 4,168 3,325 2,700 2,088 1,735 1,450
10 6,179 4,865 3,940 3,247 2,558 2,156 1,827
11 6,989 5,578 4,575 3,816 3,053 2,603 2,232
12 7,807 6,304 5,226 4,404 3,571 3,074 2,661
13 8,634 7,042 5,892 5,009 4,107 3,565 3,112
14 9,467 7,790 6,571 5,629 4,660 4,075 3,582
15 10,307 8,547 7,261 6,262 5,229 4,601 4,070
16 11,152 9,312 7,962 6,908 5,812 5,142 4,573
17 12,002 10,085 8,672 7,564 6,408 5,697 5,092
18 12,857 10,865 9,390 8,231 7,015 6,265 5,623
19 13,716 11,651 10,117 8,907 7,633 6,844 6,167
20 14,578 12,443 10,851 9,591 8,260 7,434 6,723
21 15,445 13,240 11,591 10,283 8,897 8,034 7,289
22 16,314 14,041 12,338 10,982 9,542 8,643 7,865
23 17,187 14,848 13,091 11,689 10,196 9,260 8,450
24 18,062 15,659 13,848 12,401 10,856 9,886 9,044
25 18,940 16,473 14,611 13,120 11,524 10,520 9,646
26 19,820 17,292 15,379 13,844 12,198 11,160 10,256
27 20,703 18,114 16,151 14,573 12,879 11,808 10,873
28 21,588 18,939 16,928 15,308 13,565 12,461 11,497
29 22,475 19,768 17,708 16,047 14,256 13,121 12,128
30 23,364 20,599 18,493 16,791 14,953 13,787 12,765
32 25,148 22,271 20,072 18,291 16,362 15,134 14,056
34 26,938 23,952 21,664 19,806 17,789 16,501 15,368
36 28,735 25,643 23,269 21,336 19,233 17,887 16,700
38 30,537 27,343 24,884 22,878 20,691 19,289 18,050
40 32,345 29,051 26,509 24,433 22,164 20,707 19,417
42 34,157 30,765 28,144 25,999 23,650 22,138 20,799
44 35,974 32,487 29,787 27,575 25,148 23,584 22,196
46 37,795 34,215 31,439 29,160 26,657 25,041 23,606
48 39,621 35,949 33,098 30,755 28,177 26,511 25,029
50 41,449 37,689 34,764 32,357 29,707 27,991 26,464
60 50,641 46,459 43,188 40,482 37,485 35,534 33,791
70 59,898 55,329 51,739 48,758 45,442 43,275 41,332
80 69,207 64,278 60,391 57,153 53,540 51,172 49,043
90 78,558 73,291 69,126 65,647 61,754 59,196 56,892
100 87,945 82,358 77,929 74,222 70,065 67,328 64,857

The construction and usage of these tables are similar to that of Table 1.

For example, if `a=0,05` and `df=8` ; then `chi_(0,05,\ 8)^2=15,507`


Fisher distribution

 

Consider two populations with random variable `X` normally distributed; the variances of random variable `X` of two populations are `sigma_1^2` and `sigma_2^2`. Take two samples of size `n_1` and `n_2`, the variances of these samples are `s_1^2` and `s_2^2`. The variable

`F=(s_1^2/sigma_1^2)/(s_2^2/sigma_2^2)`(35)

has Fisher distribution whose probability density function is presented in the formula:

`f(F)=(Gamma((nu_1+nu_2)/2)(nu_1/nu_2)^(nu_1/2)F^(nu_1/2-1))/( Gamma(nu_1/2)Gamma(nu_2/2)(1+(nu_1F)/nu_2)^((nu_1+nu_2)/2))`(36)

There are two degree of freedom `nu_1=n_1–1` and `nu_2=n_2– 1`. The shape of this distribution is shown in Fig. 5.

Fig. 5 Some curves of probability density function of Fisher distribution

In Fig. 5, blue curve corresponds to `nu_1=2` and `nu_2=6` ; red curve corresponds `nu_1=4` and `nu_2= 6` ; and green curve corresponds `nu_1=10` and `nu_2=6`.


Table of percentage point for F distribution

Fisher distribution is widely used in statistics, especially in data analysis of experiments. So table of percentage point of this distribution is constructed to facilitate manual calculations. This table gives us the value of `F_(a,\ df_1,\ df_2)` corresponding to the degree of freedom `df_1`, `df_2` and `a`. The value of `a` is determined from:

`a=int_F^oo f(x)dx`(37)

The value of `a` is also illustrated in Fig. 6.

f(F)F a

Fig. 6 Value of `a` and percentage point of Fisher distribution

The table consists of several parts, each part corresponds to one value of `a`. Each column corresponds to one value of degree of freedom `df_1` and each row to one value of degree of freedom `df_2`. Table 3 is the part corresponding to `a=0,05`.

Table 3 Part of table of percentage point of Fisher distribution corresponds to `a=0,05`
1 2 3 4 5 6 7 8 9 10
1 161,4 199,5 215,7 224,6 230,2 234,0 236,8 238,9 240,5 241,9
2 18,51 19,00 19,16 19,25 19,30 19,33 19,35 19,37 19,38 19,40
3 10,13 9,552 9,277 9,117 9,013 8,941 8,887 8,845 8,812 8,786
4 7,709 6,944 6,591 6,388 6,256 6,163 6,094 6,041 5,999 5,964
5 6,608 5,786 5,409 5,192 5,050 4,950 4,876 4,818 4,772 4,735
6 5,987 5,143 4,757 4,534 4,387 4,284 4,207 4,147 4,099 4,060
7 5,591 4,737 4,347 4,120 3,972 3,866 3,787 3,726 3,677 3,637
8 5,318 4,459 4,066 3,838 3,687 3,581 3,500 3,438 3,388 3,347
9 5,117 4,256 3,863 3,633 3,482 3,374 3,293 3,230 3,179 3,137
10 4,965 4,103 3,708 3,478 3,326 3,217 3,135 3,072 3,020 2,978
11 4,844 3,982 3,587 3,357 3,204 3,095 3,012 2,948 2,896 2,854
12 4,747 3,885 3,490 3,259 3,106 2,996 2,913 2,849 2,796 2,753
13 4,667 3,806 3,411 3,179 3,025 2,915 2,832 2,767 2,714 2,671
14 4,600 3,739 3,344 3,112 2,958 2,848 2,764 2,699 2,646 2,602
15 4,543 3,682 3,287 3,056 2,901 2,790 2,707 2,641 2,588 2,544
16 4,494 3,634 3,239 3,007 2,852 2,741 2,657 2,591 2,538 2,494
17 4,451 3,592 3,197 2,965 2,810 2,699 2,614 2,548 2,494 2,450
18 4,414 3,555 3,160 2,928 2,773 2,661 2,577 2,510 2,456 2,412
19 4,381 3,522 3,127 2,895 2,740 2,628 2,544 2,477 2,423 2,378
20 4,351 3,493 3,098 2,866 2,711 2,599 2,514 2,447 2,393 2,348

For example the value of `F_(0,05,\ 8,\ 12)` is in the part corresponds to 0,05, in the cell corresponds to the row of 12, the column of 8: `F_(0,05,\ 8,\ 12)=3,072`.

The values the most frequently used of `a` are 0,20, 0,10, 0,05, 0,025, 0,01, and 0,005. In cases of large number of `a` (`a>=0,80`), we can use formula:

`F_(1-alpha,\ nu_1,\ nu_2)=1/F_(alpha,\ nu_1,\ nu_2)`(38)



The previous pageThe first page of chapterThe next page


This web page was last updated on 02 December 2018.